

Late Purushottam Hari (Ganesh) Patil Shikshan Sanstha's Mauli Group of Institutions College of Engineering & Technology, Shegaon Department of Electrical Engineering (Electronics and Power)

B.E. 3<sup>rd</sup> Sem

#### **Course: Engineering Mathematics-III**

Course Code: (3EP01)

At the end of Engineering Mathematics-III course the student will be able to:

| CO No. | Course Outcome                                                                                                                          | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1      | Demonstrate the knowledge of differential equations and<br>partial differential equations, applied to electrical engineering<br>systems | L3                                              |
| 2      | Apply Laplace Transform to solve Differential Equation with constant coefficients.                                                      | L3                                              |
| 3      | Demonstrate the use of Fourier Transform to connect the time domain and frequencydomain                                                 | L3                                              |
| 4      | Apply Z Transform to solve of various Linear Difference<br>equations with constant coefficients                                         | L3                                              |
| 5      | Evaluate the knowledge of vector calculus to solve physical problems                                                                    | L5                                              |
| 6      | Evaluate Line, Surface and volume integrals, solenoid vector fields, Stokes & Divergence Theorem                                        | L5                                              |

## **Course: Electrical Circuit Analysis**

Course Code: (3EP02)

At the end of **Electrical Circuit Analysis** course the student will be **able to**:

| CO No. | Course Outcome                                                                                                                                         | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1      | Analyze V-I characteristics of inductance and<br>capacitance, also understandbasic nodal and mesh<br>analysis                                          | L4                                              |
| 2      | Analyze the circuit using Network simplification theorems                                                                                              | L4                                              |
| 3      | Formulate various combinations of RC circuits, understand<br>the concept of steadystate and sinusoidal steady state-<br>frequency response of circuits | L6                                              |
| 4      | Evaluate transient response of different circuits using<br>Laplace transform                                                                           | L5                                              |
| 5      | Evaluate two-port network parameters and network functions.                                                                                            | L5                                              |
| 6      | Formulate two port networks, their characterizations in<br>terms of impedance, admittance, hybrid and transmission<br>parameters                       | L6                                              |

#### **Course: Electrical Machines-I**

#### Course Code: (3EP03)

At the end of **Electrical Machines-I** course the student will be **able to**:

| CO No. | Course Outcome                                                                                                                                   | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1      | Explain the construction and working of DC Machines.                                                                                             | L2                                              |
| 2      | Explain the different Characteristics, types, their applications and parallel Operation of D.C. Generators                                       | L2                                              |
| 3      | Explain the various characteristics, starting, speed control<br>and braking operationon DC motors                                                | L2                                              |
| 4      | Analyze the performance of DC machines by conducting the various tests on it                                                                     | L4                                              |
| 5      | Analyze the parameters of equivalent circuits,<br>performance parameters of single phase transformer and<br>merits & demerits of autotransformer | L4                                              |
| 6      | Explain the construction, working, different connections, applications and testing of three phase transformer                                    | L2                                              |

#### **Course: Energy Resource and Generation**

Course Code: (3EP04)

At the end of Energy Resource and Generation course the student will be able to:

| CO No. | Course Outcome                                                                                                                 | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1      | Describe basic working of Thermal power plant and<br>Hydro Electric power plant, their mountings and<br>accessories            | L2                                              |
| 2      | Explain basic working of Nuclear power plant and Diesel<br>Electric power plant, their mountings and accessories               | L2                                              |
| 3      | Understand solar energy conversion, solar radiation<br>measuring instruments, wind energy conversion and<br>their applications | L2                                              |
| 4      | Explain the principle and operation of fuel cells & Wind Energy                                                                | L2                                              |
| 5      | Understand the principle and operation of ocean & tidal<br>energy conversion, and othernon-conventional energy<br>resources    | L2                                              |
| 6      | Analyze the various factors and curves related to electrical load & generating plant                                           | L4                                              |

#### **Course: Electronic Devices and Circuits**

#### Course Code: (3EP05)

At the end of **Electronic Devices and Circuits** course the student will be **able to:** 

| CO No. | Course Outcome                                                            | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|---------------------------------------------------------------------------|-------------------------------------------------|
| 1      | Apply the knowledge of semiconductor physics and PN Junction Diode        | L3                                              |
| 2      | Analyze the rectifier and regulator circuits                              | L4                                              |
| 3      | Analyze the operational parameters of BJT                                 | L4                                              |
| 4      | Analyze various multistage amplifier circuits                             | L4                                              |
| 5      | Apply the knowledge of JFET, MOSFET, UJT and their operational parameters | L3                                              |
| 6      | Explain various types of diodes                                           | L2                                              |

# LAB OUTCOMES

#### **Course: Electrical Circuit Analysis-LAB**

Course Code: (3EP06)

At the end of **Electrical Circuit Analysis- LAB** course the student will be **able to:** 

| LO No. | Course Outcome                                                     | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|--------------------------------------------------------------------|-------------------------------------------------|
| 1      | Verify the various theorems and principles of electrical circuits. | L5                                              |
| 2      | Analyze basic two port network parameters                          | L4                                              |
| 3      | Analyze the transient response of network                          | L4                                              |

#### **Course: Electrical Machines-I -LAB**

Course Code: (3EP07)

At the end of Electrical Machines-I LAB course the student will be able to:

| LO No. | Course Outcome                                                                             | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|--------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1      | Analyze the performance of D.C. motors and D.C. Generator by conducting suitable load test | L4                                              |
| 2      | Execute speed control on D.C. Motors                                                       | L3                                              |
| 3      | Conduct various tests on a single phase transformer                                        | L3                                              |

### **Course: Electronic Devices and Circuits -LAB**

#### Course Code: (3EP08)

At the end of Electronic Devices and Circuits-LAB course the student will be able to:

|        |                       | Level of Learning          |  |
|--------|-----------------------|----------------------------|--|
| LO No. | <b>Course Outcome</b> | ( as per Bloom`s Taxonomy) |  |

|   |                                                | L5 |
|---|------------------------------------------------|----|
| 1 | Verify V-I characteristics of various Diodes.  |    |
|   | Verify performance of various rectifiers.      | L5 |
| 2 |                                                |    |
|   | Verify characteristics of various Transistors. | L5 |
| 3 |                                                |    |

# **Course: Electrical Technology LAB**

# Course Code: (3EP09)

At the end of: **Electrical Technology LAB** course the student will be able to:

| LO No. | Course Outcome                                                  | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|-----------------------------------------------------------------|-------------------------------------------------|
| 1      | Understand standard symbols used in wiring diagram.             | L2                                              |
| 2      | Explain different wiring accessories.                           | L2                                              |
| 3      | Explain safety precaution while working with electrical system. | L2                                              |

# **Course: Electromagnetic Fields**

#### Course Code: (4EP01)

#### At the end of **Electromagnetic Fields** course the student will be **able to:**

| CO No. | Course Outcome                                                                                                                                                              | Level of Learning<br>( as per Bloom`s<br>Taxonomy) |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1      | Apply the basic mathematical concepts related to electromagnetic vectorfields                                                                                               | L3                                                 |
| 2      | Apply the basic laws of electrostatics fields                                                                                                                               | L3                                                 |
| 3      | Apply the principles of electrostatics to the solutions of<br>problems relating to electricfield and electric potential,<br>boundary conditions and electric energy density | L3                                                 |
| 4      | Examine and evaluate electrostatics fields in dielectric                                                                                                                    | L4                                                 |
| 5      | Examine and evaluate electromagnetic fields in dielectrics                                                                                                                  | L4                                                 |
| 6      | Apply Maxwell's equation in different forms<br>(differential and integral) to diverseengineering<br>problems                                                                | L3                                                 |

#### **Course: Electrical Measurements & Instrumentation**

#### Course Code: (4EP02)

#### At the end of **Electrical Measurements & Instrumentation** course the student will be **able to:**

| CO No. | Course Outcome                                                                                                                                                               | Level of Learning<br>( as per Bloom`s<br>Taxonomy) |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1      | Classify the various measuring instruments like<br>PMMC, MI, Electrodynamometer, and Induction type<br>instruments for measurement of current, voltage,<br>power, and energy | L2                                                 |
| 2      | Explain the construction & working of Wattmeter and Energy meter                                                                                                             | L2                                                 |
| 3      | Describe the construction & working of CT and PT                                                                                                                             | L2                                                 |
| 4      | Analyze various methods for measurement of resistance, inductance, and capacitance using AC/DC bridges                                                                       | L4                                                 |
| 5      | Explain the working of various Digital measuring instruments                                                                                                                 | L2                                                 |
| 6      | Explain the generalized Instrumentation system & working of different transducers                                                                                            | L2                                                 |

# **Course: Control Systems**

Course Code: (4EP03)

At the end of **Control Systems** course the student will be **able to:** 

| CO No. | Course Outcome                                                                                           | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1      | Apply the fundamental concepts of automatic Control<br>and mathematicalmodeling of the Systems           | L3                                              |
| 2      | Describe control system components like motors<br>synchro devices etc. and theirapplication and analysis | L2                                              |
| 3      | Formulate the transfer function of control system components                                             | L6                                              |
| 4      | Analyze stability criteria's and to plot root locus of given control system                              | L4                                              |
| 5      | Analyze frequency response methods of control system<br>like Bode plot,Nyquist plot                      | L4                                              |
| 6      | Evaluate the stability of linear systems using various methods.                                          | L5                                              |

# **Course: Numerical Methods & Optimization Techniques**

**Course Code: (4EP04)** 

At the end of Numerical Methods & Optimization Techniques course the student will be able to:

| CO No. | Course Outcome                                                                                                                 | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 1      | Solve linear and Simultaneous Equations with the help<br>of Numerical Methods                                                  | L3                                              |
| 2      | Apply various Numerical methods to fit the curve                                                                               | L3                                              |
| 3      | Analyze Numerical differentiation, integration, and Differential Equations.                                                    | L4                                              |
| 4      | Solve linear optimization problems by various methods                                                                          | L3                                              |
| 5      | Verify nonlinear optimization problems by various methods.                                                                     | L5                                              |
| 6      | Analyze dynamic optimization problems by various<br>methods and also determine the optimum scheduling by<br>using CPM and PERT | L4                                              |

#### **Course: Analog Device and Circuit**

#### Course Code: (4EP05)

At the end of Analog Device and Circuit course the student will be able to:

| CO<br>No. | Course Outcome                                                         | Level of<br>Learning<br>( as per Bloom`s<br>Taxonomy) |
|-----------|------------------------------------------------------------------------|-------------------------------------------------------|
| 1         | Explain the principles of operational amplifiers, parameters of op-amp | L2                                                    |
| 2         | Explain the linear and nonlinear applications of op-amp                | L2                                                    |
| 3         | Apply the knowledge of Voltage regulator and Timer ICs                 | L3                                                    |
| 4         | Describe the working of Logic families and their applications.         | L2                                                    |
| 5         | Design various Combinational digital circuits in Electronics           | L6                                                    |
| 6         | Analyze various Sequential digital circuits in Electronic              | L4                                                    |

# LAB OUTCOMES

#### Course: Electrical Measurements & Instrumentation-LAB

Course Code: (4EP06)

At the end of Electrical Measurements & Instrumentation-LAB course the student will be able to:

| LO No. | Course Outcome                                                   | Level of Learning<br>( as per Bloom`s<br>Taxonomy) |
|--------|------------------------------------------------------------------|----------------------------------------------------|
| 1      | Measure various types of resistance, inductance and capacitance. | L5                                                 |
| 2      | Measure active and reactive power.                               | L5                                                 |
| 3      | Describe various types of transducers and their application      | L2                                                 |

#### **Course: Control Systems-LAB**

Course Code: (4EP07)

At the end of Control Systems-LAB course the student will be able to:

| LO<br>No. | Course Outcome                                            | Level of Learning<br>( as per Bloom`s Taxonomy) |
|-----------|-----------------------------------------------------------|-------------------------------------------------|
| 1         | Understand Working of potentiometer as an error detector. | L2                                              |
| 2         | Calculate error using Synchos as an error detector.       | L3                                              |
| 3         | Determine performance characteristics of DC motor         | L5                                              |

# **Course: Analog Device and Circuit-LAB**

### Course Code: (4EP08)

At the end of Analog Device and Circuit-LAB course the student will be able to:

| LO<br>No. | Course Outcome                             | Level of Learning<br>( as per Bloom`s<br>Taxonomy) |
|-----------|--------------------------------------------|----------------------------------------------------|
| 1         | Plot frequency response Op-AMP using IC741 | L3                                                 |
| 2         | Verify operation of multiplexer IC74153    | L5                                                 |
| 3         | Verify Operation various Flip Flop         | L5                                                 |

# **Course: Electronic Technology LAB**

Course Code: (4EP09)

At the end of: **Electronic Technology LAB** course the student will be **able to:** 

| LO No. | Course Outcome                             | Level of Learning<br>( as per Bloom`s Taxonomy) |
|--------|--------------------------------------------|-------------------------------------------------|
| 1      | Identify various Electronic Components     | L4                                              |
| 2      | Design electronic Circuit on PCB           | L6                                              |
| 3      | Construct electronic Circuit on Breadboard | L6                                              |